电极电势计算公式-电极电势高低的判断方法

2025-02-12 14:37:064

电极电势计算公式

  电极电势的计算公式主要有能斯特方程,以下是其相关内容及一些具体应用示例:

  能斯特方程

  一般表达式:对于电极反应\(aOx + ne^-=bRed\),其电极电势\(\varphi\)的能斯特方程为\(\varphi=\varphi^{\ominus}+\frac{RT}{nF}\ln\frac{[Ox]^a}{[Red]^b}\)。

  \(\varphi\)为电极电势,\(\varphi^{\ominus}\)为标准电极电势,\(R\)为摩尔气体常数,\(R = 8.314 J\cdot mol^{-1}\cdot K^{-1}\)。

  \(T\)为热力学温度,单位为\(K\)。

  \(n\)为电极反应中转移的电子数。

  \(F\)为法拉第常数,\(F=96485 C\cdot mol^{-1}\)。

  \([Ox]\)和\([Red]\)分别为氧化态和还原态物质的浓度,\(a\)和\(b\)分别为氧化态和还原态物质在电极反应式中的化学计量数。

  参数含义

  常用简化形式:在\(298.15K\)时,将\(R\)、\(T\)、\(F\)的值代入能斯特方程,可得到常用的简化形式\(\varphi=\varphi^{\ominus}+\frac{0.0592V}{n}\log\frac{[Ox]^a}{[Red]^b}\)。

  应用示例

  计算金属电极电势:以锌电极\(Zn^{2 + } + 2e^-\rightleftharpoons Zn\)为例,若\(Zn^{2 + }\)浓度为\(0.1mol/L\),已知\(\varphi^{\ominus}(Zn^{2 + }/Zn)=-0.76V\),根据能斯特方程\(\varphi(Zn^{2 + }/Zn)=\varphi^{\ominus}(Zn^{2 + }/Zn)+\frac{0.0592V}{2}\log[Zn^{2 + }]\),可得\(\varphi(Zn^{2 + }/Zn)=-0.76V+\frac{0.0592V}{2}\log0.1=-0.79V\)。

  计算非金属电极电势:对于氢电极\(2H^{+}+2e^-\rightleftharpoons H_2\),若\(H^{+}\)浓度为\(0.01mol/L\),\(H_2\)分压为\(100kPa\),标准氢电极电势\(\varphi^{\ominus}(H^{+}/H_2)=0V\),根据能斯特方程\(\varphi(H^{+}/H_2)=\varphi^{\ominus}(H^{+}/H_2)+\frac{0.0592V}{2}\log\frac{[H^{+}]^{2}}{p(H_2)/p^{\ominus}}\),\(p^{\ominus}=100kPa\),则\(\varphi(H^{+}/H_2)=0V+\frac{0.0592V}{2}\log\frac{(0.01)^{2}}{1}=-0.118V\)。

  此外,对于由两个电极组成的原电池,其电池电动势\(E=\varphi_{正}-\varphi_{负}\),即正极的电极电势减去负极的电极电势,通过能斯特方程分别计算出正、负极的电极电势,就可以计算原电池的电动势。

电极电势高低的判断方法

  电极电势高低的判断方法有多种,以下从根据标准电极电势表、电极反应的性质、能斯特方程计算等方面进行介绍:

  根据标准电极电势表

  直接比较:标准电极电势表中列出了各种电极反应在标准状态下的电极电势值。电极电势值越高,该电极的氧化态物质得电子能力越强,氧化性越强;电极电势值越低,该电极的还原态物质失电子能力越强,还原性越强。例如,在酸性介质中,\(\varphi^{\ominus}(MnO_4^-/Mn^{2 + })= + 1.51V\),\(\varphi^{\ominus}(Fe^{3 + }/Fe^{2 + })= + 0.77V\),因为\(1.51V>0.77V\),所以\(MnO_4^-\)的氧化性比\(Fe^{3 + }\)强,即\(MnO_4^-/Mn^{2 + }\)电极电势高于\(Fe^{3 + }/Fe^{2 + }\)电极电势。

  注意条件:标准电极电势是在特定条件下测定的,当实际条件与标准状态不同时,需要结合能斯特方程进一步判断,但标准电极电势表仍是重要的基础和参考。

  根据电极反应的性质

  氧化还原能力:对于同一元素的不同氧化态,高价态通常具有较高的电极电势,因为高价态更易得到电子被还原。例如,\(Fe^{3 + }\)比\(Fe^{2 + }\)的氧化态高,\(Fe^{3 + } + e^-\rightleftharpoons Fe^{2 + }\)的电极电势相对较高,\(Fe^{3 + }\)具有更强的氧化性,更易得到电子变为\(Fe^{2 + }\)。

  得失电子难易程度:电极反应中,越容易得到电子的氧化态物质,其对应的电极电势越高。比如\(F_2 + 2e^-\rightleftharpoons 2F^-\),氟气具有很强的得电子能力,其电极电势很高,说明\(F_2\)是很强的氧化剂。

  根据能斯特方程计算

  考虑离子浓度:能斯特方程\(\varphi=\varphi^{\ominus}+\frac{0.0592V}{n}\log\frac{[Ox]^a}{[Red]^b}\)表明,离子浓度对电极电势有影响。对于\(Cu^{2 + } + 2e^-\rightleftharpoons Cu\),当\([Cu^{2 + }]\)增大时,\(\log\frac{[Ox]^a}{[Red]^b}\)的值增大,电极电势\(\varphi\)升高;反之,\([Cu^{2 + }]\)减小,电极电势降低。

  考虑气体分压:对于有气体参与的电极反应,如\(O_2 + 4H^{+}+4e^-\rightleftharpoons 2H_2O\),根据能斯特方程\(\varphi=\varphi^{\ominus}+\frac{0.0592V}{4}\log\frac{p(O_2)[H^{+}]^{4}}{1}\),\(O_2\)分压\(p(O_2)\)增大,电极电势升高;\(p(O_2)\)减小,电极电势降低。

  根据原电池和电解池判断

  原电池:在原电池中,正极发生还原反应,负极发生氧化反应,电子从负极流向正极。所以正极的电极电势高于负极,通过判断电极在原电池中的正负极,可确定电极电势的相对高低。如铜锌原电池中,铜为正极,锌为负极,说明铜电极的电极电势高于锌电极。

  电解池:在电解池中,阳极发生氧化反应,阴极发生还原反应。阳极材料或溶液中的阴离子失去电子,阴极材料或溶液中的阳离子得到电子。通常情况下,阴极的电极电势相对较高,阳极的电极电势相对较低。

  根据反应进行的方向

  自发反应:对于一个自发进行的氧化还原反应,氧化剂所在电对的电极电势高于还原剂所在电对的电极电势。例如反应\(Zn + Cu^{2 + } = Zn^{2 + } + Cu\)能自发进行,说明\(Cu^{2 + }/Cu\)电对的电极电势高于\(Zn^{2 + }/Zn\)电对的电极电势。

  强制反应:若需要通过外界强制条件才能使反应发生,则与自发反应情况相反,即氧化剂所在电对的电极电势低于还原剂所在电对的电极电势,但在外界能量作用下反应得以进行。

热销型号
型号库存价格
热门资讯
empty-page
无数据